Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2306623

ABSTRACT

Tightly controlled inflammation is an indispensable mechanism in the maintenance of cellular and organismal homeostasis in living organisms. However, aberrant inflammation is detrimental and has been suggested as a key contributor to organ injury with different etiologies. Substance P (SP) is a neuropeptide with a robust effect on inflammation. The proinflammatory effects of SP are achieved by activating its functional receptors, namely the neurokinin 1 receptor (NK1R) receptor and mas-related G protein-coupled receptors X member 2 (MRGPRX2) and its murine homolog MRGPRB2. Upon activation, the receptors further signal to several cellular signaling pathways involved in the onset, development, and progression of inflammation. Therefore, excessive SP-NK1R or SP-MRGPRX2/B2 signals have been implicated in the pathogenesis of inflammation-associated organ injury. In this review, we summarize our current knowledge of SP and its receptors and the emerging roles of the SP-NK1R system and the SP-MRGPRX2/B2 system in inflammation and injury in multiple organs resulting from different pathologies. We also briefly discuss the prospect of developing a therapeutic strategy for inflammatory organ injury by disrupting the proinflammatory actions of SP via pharmacological intervention.


Subject(s)
Receptors, Neurokinin-1 , Substance P , Mice , Animals , Substance P/metabolism , Receptors, Neurokinin-1/metabolism , Inflammation/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism
2.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: covidwho-1875643

ABSTRACT

Invasive aspergillosis (IA) is a life-threatening fungal disease that causes high morbidity and mortality in immunosuppressed patients. Early and accurate diagnosis and treatment of IA remain challenging. Given the broad range of non-specific clinical symptoms and the shortcomings of current diagnostic techniques, most patients are either diagnosed as "possible" or "probable" cases but not "proven". Moreover, because of the lack of sensitive and specific tests, many high-risk patients receive an empirical therapy or a prolonged treatment of high-priced antifungal agents, leading to unnecessary adverse effects and a high risk of drug resistance. More precise diagnostic techniques alongside a targeted antifungal treatment are fundamental requirements for reducing the morbidity and mortality of IA. Monoclonal antibodies (mAbs) with high specificity in targeting the corresponding antigen(s) may have the potential to improve diagnostic tests and form the basis for novel IA treatments. This review summarizes the up-to-date application of mAb-based approaches in assisting IA diagnosis and therapy.


Subject(s)
Antineoplastic Agents, Immunological , Aspergillosis , Invasive Fungal Infections , Mycoses , Antibodies, Monoclonal/therapeutic use , Antifungal Agents/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Aspergillosis/diagnosis , Aspergillosis/drug therapy , Humans , Invasive Fungal Infections/drug therapy , Mycoses/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL